Что такое нейросеть?
Искусственная нейронная сеть (ИНС) — это математическая модель, представляющая собой систему соединённых и взаимодействующих между собой нейронов.
Рассмотрим строение биологического нейрона. Каждый нейрон имеет отростки нервных волокон двух типов - дендриты, по которым принимаются импульсы, и единственный аксон, по которому нейрон может передавать импульс. Аксон контактирует с дендритами других нейронов через специальные образования - синапсы, которые влияют на силу импульса.
Можно считать, что при прохождении синапса сила импульса меняется в определенное число раз, которое мы будем называть весом синапса. Импульсы, поступившие к нейрону одновременно по нескольким дендритам, суммируются. Если суммарный импульс превышает некоторый порог, нейрон возбуждается, формирует собственный импульс и передает его далее по аксону. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующего нейрона.
ИНС успешно используется в следующих областях: • Распознавание символов текста и других объектов. • Распознавание речи. • Управление движением транспортного средства и т. д.. • Классификация ситуаций. • Кластеризация (категоризация) — классификация без «учителя». • Прогнозирование. • Аппроксимация. • Принятие решений. Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами.
Разработчикам решения на основе нейронной сети требуется: 1. выбрать соответствующую модель сети, определить топологию сети (число элементов и их связи); 2. указать параметры обучения. На первом этапе следует выбрать следующее: - какие нейроны мы хотим использовать (число входов, передаточные функции); - каким образом следует соединить их между собой; - что взять в качестве входов и выходов нейронной сети. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена, сеть Ворда, сеть Хопфильда и другие.
На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона. Бесплатные пакеты для создания нейронных сетей Fann (С++) с возможностью работы на разных языках через веб сервисы. NeuralBase (Delphi) Дополнения Wikipedia.org - каталог терминов и некоторых алгоритмов построения нейросети. Статья о мифах и реальностях использования нейросетей для анализа движения цен. Материалы лекций школ-семинаров по нейроинформатике. Лекции по машинному обучению и нейронным сетям. Форумы Neuroproject.ru Basegroup.ru
Источники Wikipedia.org Neuroproject.ru
|