Первым открытием Архимеда в механике было введение понятия центра тяжести, т.е. доказательство того, что в любом теле есть единственная точка, в которой можно сосредоточить его вес, не нарушив равновесного состояния.
Герон и Папп приводят со ссылкой на Архимеда доказательство существования центра тяжести. Герон предваряет теорему фразой, относящейся к рассмотрению Архимедом идеализированных «физико-математических» тел (метод абстракции). Герон пишет: «Никто не отрицает, что о наклонении и отклонении в действительности говорят только о телах. Если же мы говорим о плоских или телесных (объемных) фигурах, что некоторая точка является их центром поворота и центром тяжести, то это достаточно разъяснено Архимедом». Эта фраза подтверждает, что замена тел их теоретическими моделями была в науке новшеством, введенным Архимедом.
Определение центра тяжести формулируется так: «...центром тяжести некоторого тела является некоторая расположенная внутри него точка, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно останется в покое и сохранит первоначальное положение».
Доказательство существования центра тяжести также основано на мысленном уравновешивании тела. В нем тело мысленно помещают на горизонтальную прямую, являющуюся основанием вертикальной плоскости : «Если какое-нибудь обладающее весом тело положить на прямую так, чтобы оно полностью рассекалось продолжением упомянутой плоскости, то оно может иногда занять такое положение, что будет оставаться в покое... Если затем переставить груз так, чтобы он касался прямой другой своей частью, то можно при поворачивании дать ему такое положение, что он, будучи отпущен, останется в покое... Если снова вообразить плоскость продолженной, то она разделит груз на две взаимно уравновешивающиеся части и пересечется с первой плоскостью... Если бы эти плоскости не пересеклись, то те же самые части были бы и уравновешивающимися и неуравновешивающимися, что нелепо».
Действительно, если бы плоскости, рассекающие груз на уравновешенные части, оказались параллельными (не пересекались), то можно было бы уравновесить тело, не поворачивая его, а только сдвинув параллельно самому себе. Это означало бы, что к одной из частей добавился бы отнятый от второй части объем, заключенный между плоскостями, что должно было бы нарушить равновесие. Путем подобных же рассуждений доказывается, что на линии пересечения плоскостей находится единственная точка, являющаяся центром тяжести.
Архимед решил ряд задач на нахождение центров тяжести различных геометрических фигур: треугольника, параллелограмма, конуса, сегмента параболы.
Источники:
- Наука и техника - электронный журнал.Имеется статья Сергея Житомирского про Архимеда. В ней имеется глава посвящённая данному вопросу.
- Большая Советская Энциклопедия - современное определение центра тяжести.Имеются простые формулы для вычисления координат центра тяжести.
- Мегаэнциклопедия Кирилла и Мефодия - на данном сайте можно найти информацию о знаменитых открытиях Архимеда в области механики и математики.
- Википедия - статья посвящённая Архимеду.
Дополнительно от Генон:
→ По какой формуле расчитать закон всемирного тяготения?
→ От чего зависит сила приятжения?
→ Что такое теоретическая механика?