28982 автора и 62 редактора ответили на 85243 вопроса,
разместив 135214 ссылок на 43429 сайтов, присоединяйтесь!

Что такое позитрон?

РедактироватьВ избранноеПечать

Позитрон (от англ. positive — положительный и «-трон») — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма-квантов.

 

Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1,022 МэВ с веществом. Последний процесс называется «рождением пар», ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон.

 

Открытие позитрона

Существование позитрона впервые было предположено в 1928 Полем Дираком. Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

 

В соответствии с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2×0,511 МэВ. Поскольку были известны естественные радиоактивные вещества, испускавшие γ-кванты с энергией больше 1 МэВ, представлялось возможным получить позитроны в лаборатории, что и было сделано. Экспериментальное сравнение свойств позитронов и электронов показало, что все физические характеристики этих частиц, кроме знака электрического заряда, совпадают.

 

Позитрон был открыт в 1932 г. американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой в магнитное поле. Название «позитрон» придумал сам Андерсон. Интересно, что Андерсон также предлагал, правда безуспешно, переименовать электроны в «негатроны». Он сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб под действием магнитного поля, противоположный следам электронов, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Вскоре после этого открытия, также с помощью камеры Вильсона, были получены фотографии, проливавшие свет на происхождение позитронов: под действием γ-квантов вторичного космического излучения позитроны рождались в парах с обычными электронами. Такие свойства вновь открытой частицы оказались в поразительном согласии с уже имевшейся релятивистской теорией электрона Дирака. В 1934 г. Ирен и Фредерик Жолио-Кюри во Франции открыли ещё один источник позитронов — β+-радиоактивность.

 

Позитрон оказался первой открытой античастицей. Существование античастицы электрона и соответствие суммарных свойств двух античастиц выводам теории Дирака, которая могла быть обобщена на другие частицы, указывало на возможность парной природы всех элементарных частиц и ориентировало последующие физические исследования. Такая ориентация оказалась необычайно плодотворной, и в настоящее время парная природа элементарных частиц является точно установленным законом природы, обоснованным большим числом экспериментальных фактов.

 

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами.

 

Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта.

 

С 1951 г. известно, что в некоторых аморфных телах, жидкостях и газах позитрон после торможения в значительном числе случаев сразу не аннигилирует, а образует на короткое время связанную с электроном систему, получившую название позитроний. Позитроний в смысле своих химических свойств аналогичен атому водорода, так как представляет собой систему, состоящую из единичных положительного и отрицательного электрических зарядов, и может вступать в химические реакции. Поскольку электрон и позитрон — разные частицы, то в связанном состоянии с наинизшей энергией они могут находиться не только с антипараллельными, но и с параллельными спинами. В первом случае полный спин позитрония s = 0, что соответствует парапозитронию, а во втором — s = 1, что соответствует ортопозитронию. Интересно, что аннигиляция электрон-позитронной пары в составе ортопозитрония не может сопровождаться рождением двух γ-квантов. Два γ-кванта уносят друг относительно друга механические моменты, равные 1, и могут составить полный момент, равный нулю, но не единице. Поэтому аннигиляция в этом случае сопровождается испусканием трёх γ-квантов с суммарной энергией 1,022 МэВ. Образование ортопозитрония в три раза более вероятно, чем парапозитрония, так как отношение статистических весов (2s+1) обоих состояний позитрония 3:1. Однако даже в телах с большим процентом (до 50 %) аннигиляции пары в связанном состоянии, т. е. после образования позитрония, преимущественно появляются два γ-кванта и лишь очень редко три. Дело в том, что время жизни парапозитрония около 10−10 сек, а ортопозитрония — около 10−7 сек. Долгоживущий ортопозитроний, непрерывно взаимодействующий с атомами среды, не успевает аннигилировать с испусканием трёх γ-квантов прежде, чем позитрон, вводящий в его состав, аннигилирует с посторонним электроном в состоянии с антипараллельными спинами и с испусканием двух γ-квантов.

Возникающие при аннигиляции остановившегося позитрона два гамма-кванта несут энергию по 511 кэВ и разлетаются в строго противоположных направлениях. Этот факт позволяет установить положение точки, в которой произошла аннигиляция, и используется в позитрон-эмиссионной томографии.

 

В 2007 экспериментально доказано существование связанной системы из двух позитронов и двух электронов (молекулярный позитроний). Такая молекула распадается ещё быстрее, чем атомарный позитроний.

 

Позитроны в природе

Считается, что в первые мгновения после Большого Взрыва количество позитронов и электронов во Вселенной было примерно одинаково, однако при остывании эта симметрия нарушилась. Пока температура Вселенной не понизилась до 1 МэВ, тепловые фотоны постоянно поддерживали в веществе определённую концентрацию позитронов путём рождения электрон-позитронных пар (такие условия существуют и сейчас в недрах горячих звёзд). После охлаждения вещества Вселенной ниже порога рождения пар оставшиеся позитроны аннигилировали с избытком электронов.

 

В космосе позитроны рождаются при взаимодействии с веществом гамма-квантов и энергичных частиц космических лучей, а также при распаде некоторых типов этих частиц (например, положительных мюонов). Таким образом, часть первичных космических лучей составляют позитроны, так как в отсутствие электронов они стабильны. В некоторых областях Галактики обнаружены аннигиляционные гамма-линии 511 кэВ, доказывающие присутствие позитронов.

 

В солнечном термоядерном pp-цикле (а также в CNO-цикле) часть реакций сопровождается эмиссией позитрона, который немедленно аннигилирует с одним из электронов окружения; таким образом, часть солнечной энергии выделяется в виде позитронов, и в ядре Солнца всегда присутствует некоторое их количество (в равновесии между процессами образования и аннигиляции).

 

Некоторые природные радиоактивные ядра (первичные, радиогенные, космогенные) испытывают бета-распад с излучением позитронов. Например, часть распадов природного изотопа 40K происходит именно по этому каналу. Кроме того, гамма-кванты с энергией более 1,022 МэВ, возникающие при радиоактивных распадах, могут рождать электрон-позитронные пары.

 

При взаимодействии электронного антинейтрино (с энергией больше 1,8 МэВ) и протона происходит реакция обратного бета-распада с образованием позитрона. Такая реакция происходит в природе, поскольку существует поток антинейтрино с энергией выше порога обратного бета-распада, возникающих, например, при бета-распаде природных радиоактивных ядер.

 

Источник и дополнительная информация:

Дополнительно от Генона:

Последнее редактирование ответа: 03.12.2010

  • Оставить отзыв

    Оставить отзыв

РедактироватьВ избранноеПечать


Посмотреть «позитрон» в словарях и энциклопедиях:

ЯndexВикипедияКругосветKM.RU@mail.ruGoogle

«Что такое позитрон»

В других поисковых системах:

GoogleЯndexRamblerВикипедия

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru. Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года "О защите детей от информации, причиняющей вред их здоровью и развитию". Обращение к пользователям 18+.